31 research outputs found

    Object detection, distributed cloud computing and parallelization techniques for autonomous driving systems.

    Get PDF
    Autonomous vehicles are increasingly becoming a necessary trend towards building the smart cities of the future. Numerous proposals have been presented in recent years to tackle particular aspects of the working pipeline towards creating a functional end-to-end system, such as object detection, tracking, path planning, sentiment or intent detection, amongst others. Nevertheless, few efforts have been made to systematically compile all of these systems into a single proposal that also considers the real challenges these systems will have on the road, such as real-time computation, hardware capabilities, etc. This paper reviews the latest techniques towards creating our own end-to-end autonomous vehicle system, considering the state-of-the-art methods on object detection, and the possible incorporation of distributed systems and parallelization to deploy these methods. Our findings show that while techniques such as convolutional neural networks, recurrent neural networks, and long short-term memory can effectively handle the initial detection and path planning tasks, more efforts are required to implement cloud computing to reduce the computational time that these methods demand. Additionally, we have mapped different strategies to handle the parallelization task, both within and between the networks

    A comparison of feature extractors for panorama stitching in an autonomous car architecture.

    Get PDF
    Panorama stitching consists on frames being put together to create a 360o view. This technique is proposed for its implementation in autonomous vehicles instead of the use of an external 360o camera, mostly due to its reduced cost and improved aerodynamics. This strategy requires a fast and robust set of features to be extracted from the images obtained by the cameras located around the inside of the car, in order to effectively compute the panoramic view in real time and avoid hazards on the road. In this paper, we compare and discuss three feature extraction methods (i.e. SIFT, BRISK and SURF) for image feature extraction, in order to decide which one is more suitable for a panorama stitching application in an autonomous car architecture. Experimental validation shows that SURF exhibits an improved performance under a variety of image transformations, and thus appears to be the most suitable of these three methods, given its accuracy when comparing features between both images, while maintaining a low time consumption. Furthermore, a comparison of the results obtained with respect to similar work allows to increase the reliability of our methodology and the reach of our conclusions

    Desarrollo, evaluación e implementación en tiempo real del sistema de cancelación de ruido

    No full text
    Tesis (Doctorado en Comunicaciones y Electrónica), Instituto Politécnico Nacional, SEPI, ESIME, Unidad Culhuacán, 2005, 1 archivo PDF, (106 páginas). tesis.ipn.m

    A Review of Road Surface Anomaly Detection and Classification Systems Based on Vibration-Based Techniques

    No full text
    Road surfaces suffer from sources of deterioration, such as weather conditions, constant usage, loads, and the age of the infrastructure. These sources of decay generate anomalies that could cause harm to vehicle users and pedestrians and also develop a high cost to repair the irregularities. These drawbacks have motivated the development of systems that automatically detect and classify road anomalies. This study presents a narrative review focused on road surface anomaly detection and classification based on vibration-based techniques. Three methodologies were surveyed: threshold-based methods, feature extraction techniques, and deep learning techniques. Furthermore, datasets, signals, preprocessing steps, and feature extraction techniques are also presented. The results of this review show that road surface anomaly detection and classification performed through vibration-based methods have achieved relatively high performance. However, there are challenges related to the reproduction and heterogeneity of the results that have been reported that are influenced by the limited testing conditions, sample size, and lack of publicly available datasets. Finally, there is potential to standardize the features computed through the time or frequency domains and evaluate and compare the diverse set of settings of time-frequency methods used for feature extraction and signal representation

    A Review of Road Surface Anomaly Detection and Classification Systems Based on Vibration-Based Techniques

    No full text
    Road surfaces suffer from sources of deterioration, such as weather conditions, constant usage, loads, and the age of the infrastructure. These sources of decay generate anomalies that could cause harm to vehicle users and pedestrians and also develop a high cost to repair the irregularities. These drawbacks have motivated the development of systems that automatically detect and classify road anomalies. This study presents a narrative review focused on road surface anomaly detection and classification based on vibration-based techniques. Three methodologies were surveyed: threshold-based methods, feature extraction techniques, and deep learning techniques. Furthermore, datasets, signals, preprocessing steps, and feature extraction techniques are also presented. The results of this review show that road surface anomaly detection and classification performed through vibration-based methods have achieved relatively high performance. However, there are challenges related to the reproduction and heterogeneity of the results that have been reported that are influenced by the limited testing conditions, sample size, and lack of publicly available datasets. Finally, there is potential to standardize the features computed through the time or frequency domains and evaluate and compare the diverse set of settings of time-frequency methods used for feature extraction and signal representation

    Applications of the Generalized Morse Wavelets: A Review

    No full text
    The study of signals, processes, and systems has motivated the development of different representations that can be used to analyze and understand them. Classical ways of studying the behavior of signals are the time domain and frequency domain representations. For the analysis of non-stationary signals, time-frequency representations have become an essential tool to understand how the frequency content of signals changes with time. A common time-frequency technique employed in the literature is the wavelet transform. Nevertheless, selecting an adequate mother wavelet to perform the wavelet transform has become challenging due to the diverse available wavelet families. This paper reviews the applications and uses of a particular class of wavelet basis known as the Generalized Morse Wavelets. This class of wavelet family provides a systematic framework to choose and generate a wavelet for general-purpose use. This study reviews the application of Generalized Morse Wavelets in biomedical engineering, dynamical systems analysis, electrical engineering, geophysics, and communication systems. Moreover, the parameters of the Generalized Morse Wavelets used in each study are presented. The results of this study reveal that Generalized Morse Wavelets have proven helpful in studying signals, systems, and processes in areas ranging from biomedical engineering to geophysics. Nonetheless, the parameters of the Generalized Morse Wavelets are yet to be chosen through a rigorous methodology and argumentation. Therefore, there is an opportunity to generate methods for selecting the parameters of the Generalized Morse Wavelets based on the characteristics of the signals, systems, or processes under research

    Systematic Mapping of Digital Gap and Gender, Age, Ethnicity, or Disability

    No full text
    Rapid technological evolution defines the first two decades of the millennium. This phenomenon has increased the digital gap, disparities, and inequalities in global and local contexts. This paper reports a systematic literature mapping of 180 articles published from 2000 to 2021 discussing the digital gap. The documents were retrieved using boolean operations in two databases, adding terms related to gender, age, ethnicity, and disabilities, focusing on population groups that are especially vulnerable to the effects of this phenomenon. The method included categorizing the retrieved documents to provide a general view of the most concerning topics in the academic and research community. This analysis concludes (a) the approaches to address this topic are diverse, as this is a multilayered, complex, and interconnected issue; (b) many studies refer to developed countries; however, fewer are those who observe or analyze the underdeveloped regions; (c) the majority of published papers in the last decade report information and communication technologies (ICT) and their role in bridging the gap, showing an opportunity area for designing these technologies considering more accessible approaches through flexible technology approaches; (d) this study’s results are a valuable source of information to identify the design requirements for accessible products and service systems. The last section provides a detailed explanation of the findings
    corecore